F eb 1 99 7 Family of Affine Quantum Group Invariant Integrable Extensions of Hubbard

نویسندگان

  • A. Avakyan
  • T. Hakobyan
  • A. Sedrakyan
چکیده

We construct the family of spin chain Hamiltonians, which have affine quantum group symmetry U q ˆ g. Their eigenvalues coincide with the eigen-values of the usual spin chain Hamiltonians, but have the degeneracy of levels, corresponding to affine U q ˆ g. The space of states of these spin chains is formed by the tensor product of fully reducible representations of quantum group. The fermionic representations of constructed spin chain Hamiltonians show that we have new extensions of Hubbard Hamiltonians. All of them are integrable and have affine quantum group symmetry. The exact ground state of a such type model is presented, exhibiting superconducting behavior via η-pairing mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Family of Affine Quantum Group Invariant Integrable Extensions of Hubbard Hamiltonian

We construct the family of spin chain hamiltonians, which have affine quantum group symmetry U q ˆ g. Their eigenvalues coincide with the eigen-values of the usual spin chain hamiltonians, but have the degeneracy of levels, corresponding to affine U q ˆ g. The space of states of these spin chains is formed by the tensor product of fully reducible representations. The fermionic representations o...

متن کامل

ar X iv : h ep - t h / 96 12 07 8 v 1 7 D ec 1 99 6 AFFINE ORBIFOLDS AND RATIONAL CONFORMAL FIELD

Chiral orbifold models are defined as gauge field theories with a finite gauge group Γ. We start with a conformal current algebra A associated with a connected compact Lie group G and a negative definite integral invariant bilinear form on its Lie algebra. Any finite group Γ of inner automorphisms or A (in particular, any finite subgroup of G) gives rise to a gauge theory with a chiral subalgeb...

متن کامل

/ 95 06 06 4 v 1 9 J un 1 99 5 Supersymmetry in Boundary Integrable Models ∗

Quantum integrable models that possess N = 2 supersymmetry are investigated on the half-space. Conformal perturbation theory is used to identify some N = 2 supersymmetric boundary integrable models, and the effective boundary Landau-Ginzburg formulations are constructed. It is found that N = 2 supersymmetry largely determines the boundary action in terms of the bulk, and in particular, the boun...

متن کامل

ar X iv : c on d - m at / 9 90 64 41 v 1 3 0 Ju n 19 99 FINITE TEMPERATURE TRANSPORT IN INTEGRABLE QUANTUM MANY BODY SYSTEMS

Recent developments in the analysis of finite temperature dissipationless transport in inte-grable quantum many body problems are presented. In particular, we will discuss: (i) the role played by the conservation laws in systems as the spin 1/2 Heisenberg chain and the one-dimensional Hubbard model, (ii) exact results obtained using the Bethe ansatz method on the long time decay of current corr...

متن کامل

Cohomologies of Affine Jacobi Varieties and Integrable Systems

We study the affine ring of the affine Jacobi variety of a hyper-elliptic curve. The matrix construction of the affine hyper-elliptic Jacobi varieties due to Mumford is used to calculate the character of the affine ring. By decomposing the character we make several conjectures on the cohomology groups of the affine hyper-elliptic Jacobi varieties. In the integrable system described by the famil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996